
1 1

Recent developments in parallel

programming: the good, the bad, and the ugly

Tim Mattson, Kayak bum and Intel Labs researcher

2 2

Disclaimer

• The views expressed in this talk are those of the
speaker and not his employer.

• I work in a research lab and know very little about
Intel Products that you couldn’t learn online.

3

 the “Dead Architecture Society”

Alliant

ETA

Encore

Sequent

SGI

Myrias

Intel SSD

BBN

IBM

Workstation/PC clusters

Masspar

Thinking machines

ICL/DAP

Goodyear

Multiflow

FPS

KSR

Denelcore HEP

Tera/MTA – now Cray

Shared

Memory

MIMD

Distributed

Memory

MIMD

SIMD

Other

1980 1990 2000

Any product names on this slide are the property of their owners.

What went wrong? Automatic parallelism will never work

in real applications … so you have to write parallel code …

and Programming these systems were akin to herding cats

Only a small number of super computing aficionados took up the
challenge of programming these systems

Source: EDS Super bowl 2005 commercial

Third party names are the property of their owners.

Application software is all that matters!

• If we don’t want to add

many-core chips to the

dead architecture

society, we had better

take the needs of our

applications

programmers VERY

seriously

5

… so let’s take a look at some of the important
recent trends in parallel programming.

The Good the Bad and the Ugly

• Threading like its 2011

• Next generation heterogeneous programming

• Parallel languages/tools will never get it right. I give up.

6

7

Example Problem: Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the

integral as a sum of

rectangles:

Where each rectangle has

width x and height F(xi) at

the middle of interval i.

4.0

2.0

1.0

X
0.0

8

PI Program: an example

#define NUMSTEPS = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 x = 0.5 * step;

 for (i=0;i<= NUMSTEPS; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

9

#define NUMSTEPS = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) NUMSTEPS;

 x = 0.5 * step;

 for (i=0;i<= NUMSTEPS; i++){

 x+=step;

 sum += 4.0/(1.0+x*x);

 }

 pi = step * sum;

}

PI Program: an example

Let’s turn this into a parallel program using the Pthreads API.

Package this

into a function

Assign loop

iterations to

threads

Variable to accumulate

thread results must be

shared

Assure safe update to sum …

correct for any thread schedule

10

Numerical Integration: PThreads (1 of 2)

#include <stdio.h>

#include <pthread.h>

#define NUMSTEPS 10000000

#define NUMTHREADS 4

double gStep = 0.0, gPi = 0.0; pthread_mutex_t gLock;

void *Func(void *pArg)

{

 int myRank = *((int *)pArg);

 double partialSum = 0.0, x;

 for (int i = myRank; i < NUMSTEPS; i += NUMTHREADS)

 {

 x = (i + 0.5f) * gStep;

 partialSum += 4.0f / (1.0f + x*x);

 }

 pthread_mutex_lock(&gLock);

 gPi += partialSum * gStep;

 pthread_mutex_unlock(&gLock);

 return 0;

}

Source: Michael Wrinn of Intel

Cyclic loop distribution … deal out

loop iterations as you would a deck of

cards

Put any code you want inbetweeen

the Mutex_lock and unlock. This is

called a Critical section … only one

thread at a time can execute this code

Global variables … on the heap

11

Numerical Integration: PThreads (2 of 2)

int main()

{

 pthread_t thrds[NUMTHREADS];

 int tNum[NUMTHREADS], i;

 pthread_mutex_init(&gLock, NULL);

 gStep = 1.0 / NUMSTEPS;

 for (i = 0; i < NUMTHREADS; ++i)

 {

 tRank[i] = i;

 pthread_create(&thrds[i], NULL,Func,(void)&tRank[i]);

 }

 for (i = 0; i < NUMTHREADS; ++i)

 {

 pthread_join(thrds[i], NULL);

 }

 pthread_mutex_destroy(&gLock);

 printf("Computed value of Pi: %12.9f\n", gPi);

 return 0;

}
Source: Michael Wrinn of Intel

12

#include <windows.h>

#define NUM_THREADS 2

HANDLE thread_handles[NUM_THREADS];

CRITICAL_SECTION hUpdateMutex;

static long num_steps = 100000;

double step;

double global_sum = 0.0;

void Pi (void *arg)

{

 int i, start;

 double x, sum = 0.0;

 start = *(int *) arg;

 step = 1.0/(double) num_steps;

 for (i=start;i<= num_steps;i=i+NUM_THREADS){

 x = (i-0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

 }

 EnterCriticalSection(&hUpdateMutex);

 global_sum += sum;

 LeaveCriticalSection(&hUpdateMutex);

}

void main ()

{

 double pi; int i;

 DWORD threadID;

 int threadArg[NUM_THREADS];

 for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

 InitializeCriticalSection(&hUpdateMutex);

 for (i=0; i<NUM_THREADS; i++){

 thread_handles[i] = CreateThread(0, 0,

 (LPTHREAD_START_ROUTINE) Pi,

 &threadArg[i], 0, &threadID);

}

 WaitForMultipleObjects(NUM_THREADS,

 thread_handles, TRUE,INFINITE);

 pi = global_sum * step;

 printf(" pi is %f \n",pi);

}

Windows API (Win32):
Same algorithm, different API

C++’11provides a portable (and cleaner)

way to write my “pi program”

13

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>
std::mutex m;
static long nsteps = 100000000;
double step;
double pi=0.0;
void pi_func(int id, int nthrds)
{
 double x, sum=0.0;
 double step =1.0/(double) nsteps;
 for (int i=id;i<=nsteps; i+=nthrs){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 m.lock();
 pi += step * sum;
 m.unlock();
}

int main ()
{
 int i;
 unsigned long hwthrds =
 std::thread::hardware_concurrency();

 std::vector<std::thread>thrds(hwthrds-1);

 for(int i=0; i<hw_thrds-1;i++)
 thrds[i]=std::thread(pi_func,i,hwthrds);
 pi_func(hw_thrds-1,hw_thrds);

 for(int i=0; i<hw_thrds-1;i++)
 thrds[i].join();

 std::cout << "\n pi =" << pi <<"\n";
}

History of C++

14

1979 BjarneStroustrup developed “C with classes” inspired by his

work with the early OOP language Simula

Early 80’s CFront is the first tool to generate C from “C with Classes”

1983 C++ is born based on C with Classes

1985 Bjarne Stroustrup publishes “the C++ programming language”

1998 First formal standard from ISO, C++98

2003 Second ISO C++ standard .. Patched up issues in C++98

Late 2011 The current ISO C++ standard released …. C++11. Many

changes including multi-threading support!!!

2013 CPLEX group formed to explore high level parallel constructs

in future ISO C++ standards

C++’11 and multithreaded programming

15

#include <iostream>

static long num_steps = 100000000;
double step, pi=0.0;
int main ()
{

 double x, sum=0.0, double step = 1.0/(double) num_steps;
 for (int i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 pi += step * sum;

 std::cout << "\n pi with " << num_steps << " is " << pi <<"\n";

}

Approximate this integral

With this summation

C++’11 and multithreaded programming

16

#include <iostream>
#include <thread>
#include <vector>

static long num_steps = 100000000;
double step, pi=0.0;
int main ()
{ unsigned long nthrds = std::thread::hardware_concurrency();
 std::vector<std::thread>threads(nthrds-1);

 double x, sum=0.0, double step = 1.0/(double) num_steps;
 for (int i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 pi += step * sum;

 std::cout << "\n pi with " << num_steps << " is " << pi <<"\n";

}

Fetch how many
concurrent threads the
hardware can support

Setup a
vector of
thread
objects

Step 1 of 3

C++’11 and multithreaded programming

17

#include <iostream>
#include <thread>
#include <vector>

static long num_steps = 100000000;
double step, pi=0.0;
int main ()
{ unsigned long nthrds = std::thread::hardware_concurrency();
 std::vector<std::thread>threads(nthrds-1);
 for(int id=0; id<nthrds;id++) {
 threads[id]=std::thread([id,nthrds]{
 double x, sum=0.0, double step = 1.0/(double) num_steps;
 for (int i=1;i<= num_steps; i++){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 pi += step * sum;
 });
 }
 for(int id=0; id<nthrds;id++) threads[id].join();
 std::cout << "\n pi with " << num_steps << " is " << pi <<"\n";

}

Call constructor
for each thread
with “pi loop”

packaged into a
lambda

expression with
capture (copy)

of id and
nthrds.

Wait for each
thread to finish

Step 2 of 3

C++’11 and multithreaded programming

18

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

std::mutex m;
static long num_steps = 100000000;
double step, pi=0.0;
int main ()
{ unsigned long nthrds = std::thread::hardware_concurrency();
 std::vector<std::thread>threads(nthrds-1);
 for(int id=0; id<nthrds;id++) {
 threads[id]=std::thread([id,nthrds]{
 double x, sum=0.0, double step = 1.0/(double) num_steps;
 for (int i=id;i<= num_steps; i+=nthrds){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 std::lock_guard<std::mutex> guard(m);
 pi += step * sum;
 });
 }
 for(int id=0; id<nthrds;id++) threads[id].join();
 std::cout << "\n pi with " << num_steps << " is " << pi <<"\n";

}

Protect update of
our accumulator

with a mutex
(release in thread

destructor)

Cyclic distribution
of loop iterations

Declare a mutex to support safe
accumulation of each threads partial sum

Step 3 of 3

C++’11 and multithreaded programming

19

#include <iostream>
#include <thread>
#include <vector>
#include <mutex>

std::mutex m;
static long num_steps = 100000000;
double step, pi=0.0;
int main ()
{ unsigned long nthrds = std::thread::hardware_concurrency();
 std::vector<std::thread>threads(nthrds-1);
 for(int id=0; id<nthrds;id++) {
 threads[id]=std::thread([id,nthrds]{
 double x, sum=0.0, double step = 1.0/(double) num_steps;
 for (int i=id;i<= num_steps; i+=nthrds){
 x = (i-0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 m.lock(); pi += step * sum; m.unlock();

 });
 }
 for(int id=0; id<nthrds;id++) threads[id].join();
 std::cout << "\n pi with " << num_steps << " is " << pi <<"\n";

}

Alternate use of the
mutex … might
perform better?

Parallelism in C++’11

• The core constructs expected on a shared memory

machine were added:

– Threads

– Synchronization

– Futures and promises

– Async tasks

• Plus features to make things easier for programmers

– Lambda functions

– Auto

• And they did the responsible thing … they defined a

memory model.

– Constrains consistency of memory operations between threads to

define the semantics of shared variables. Defines the set of values

that can be returned from a read

20

The C++’11 Memory model

• For most programmers …

–If your program is free of data races

– i.e. loads and stores to the same location form

different threads don’t conflict.

–If you use the default mode on synchronization

constructs

–Then your program will appear to be sequentially

consistent … that is:

–Each thread sees loads and stores in “program order”

–All threads see Loads and stores in a single “total

order” defined as a semantically allowed interleaving of

ops from each thread.

21

But there will be pain …

• Original Code

22

x = y = 0

Thread 1 Thread 2

r1 = X; r3 = y;

r2 = X; x = r3;

If (r1==r2) y = 1;

Thread 1 Thread 2

y = 1; r3 = y;

r1 = x; x = r3;

r2 = r1;

if(true);

From S. Adve and H. Boehm, Comm ACM vol. 53, No. 8, pp. 90-101

• Redundant read elimination means r1 always equals r2 so

y always equals 1 and can be moved ahead of load(x)

• Sequential consistency allows results:

r1 r2 r3

0 0 1

0 0 0

r1 r2 r3

0 0 1

1 1 1

And even more pain… (1 of 3)

#include <iostream>

#include <omp.h>

int val1 = 0; flag= 0

#pragma omp parallel sections num_threads(2) shared (val1, flag)

{

 #pragma omp section

 { val1 = 1;

 #pragma omp flush

 flag = 1;

 #pragma omp flush

 }

 #pragma omp section

 {

 #pragma omp flush

 if (flag == 1)

 printf(“if this prints, it can only print 1, %d”,val1);

 }

}

23

We’ve been teaching people to
write code like this for years.

According to the rules for flush
in OpenMP 2.5 and earlier, it is
correct.

And it’s worked every where
I”ve tested it

And even more pain… (2 of 3)

#include <iostream>

int val1 = 0; flag= 0

void func1() {

 val1 = 1;

 std::atomic_thread_fence();

 flag = 1;

 std::atomic_thread_fence();

}

void func2() {

 std::atomic_thread_fence();

 if (flag==1)

 std::cout << “val 1 = “ << val1 << “better equal 1 \n”;

}

Int main() {

 std::thread t1 (func1);

 std::thread t2 (func2);

 t1.join(); t2.join();

}

24

Let’s do this with C++’11

This won’t work. Why?

Because fences only order atomic
operations. Normal loads and stores

can move around them!

And even more pain… (3 of 3)

#include <iostream>

int val1 = 0; std::atomic<int>flag=0;

void func1() {

 val1 = 1;

 std::atomic_thread_fence();

 flag.store(1,std::memory_order_relaxed);

 std::atomic_thread_fence();

}

void func2() {

 std::atomic_thread_fence();

 if (flag.load(std::memory_order_relaxed)==1))

 std::cout << “val 1 = “ << val1 << “better equal 1 \n”;

}

Int main() {

 std::thread t1 (func1);

 std::thread t2 (func2);

 t1.join(); t2.join();

}

25

Make flag an atomic and this works

Experienced multithreaded
programmers will find this
surprising and obnoxious.

And even more pain

• Relaxed consistency is supported with atomics and fences

with the following memory orders:

– Relaxed

– Acquire

– Consume

– Release

– Acquire and release

– Sequentially consistent

• Using these correctly is painfully difficult and well beyond

the abilities of most (all?) of us.

• Do we really know what we are doing by foisting such

things onto the world’s programmers?

26

Remember the famous warning attributed to A. Einstein

“If you can't explain it to a six year old, you don't understand it yourself.”

std::atomic<bool> x,y; x = y = false;
void spin_lock_release(){
 x.store(true,std::memory_order_release);
}
void spin_lock_wait(){
 whiile(!y.load(std::memory_order_acquire));
}

27

We should just abandon threading

Time

E
ffo

rt

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

E
ffo

rt

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using

semaphores is race free is an NP-complete problem*

The Good the Bad and the Ugly

• Threading like its 2011

• Next generation heterogeneous programming

• Parallel languages/tools will never get it right. I give up

28

29 29

Industry Standards for Programming
Heterogeneous Platforms

CPUs
Multiple cores driving

performance increases

GPUs
Increasingly general purpose

data-parallel computing

Graphics APIs
and Shading
Languages

Multi-processor
programming –

e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming

of heterogeneous
parallel computing CPUs, GPUs, and other processors

OpenCL – Open Computing Language
Open, royalty-free standard for portable, parallel programming

of heterogeneous
parallel computing CPUs, GPUs, and other processors

30 30

arg [0]

value

arg [1]

value

arg [2]

value

arg [0]

value

arg [1]

value

arg [2]

value

In

Order

Queu

e

Out

of

Order

Queu

e GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program

binary

dp_mul
GPU program

binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCL Summary

OpenCL Milestones

• Multiple conformant 1.X implementations shipping on

desktop and mobile

– For CPUs and GPUs on multiple OS

OpenCL 1.0
released.

Conformance tests
released Dec08

Dec08

Jun10

OpenCL 1.1
Specification

and
conformance

tests
released

Nov11

OpenCL 1.2
Specification and

conformance
tests released

Within 6

months
(depends on

feedback)

OpenCL 2.0
Specification
finalized and
conformance
tests released

Jul13

OpenCL 2.0
Provisional

Specification
released for public

review

OpenCL as Parallel Compute Foundation

C++

syntax/compiler

extensions

OpenCL HLM
Aparapi

Java language

extensions for

parallelism

JavaScript binding

to OpenCL for

initiation of OpenCL

C kernels

WebCL River Trail

Language

extensions to

JavaScript

C++ AMP

Shevlin

Park

Uses Clang

and LLVM

PyOpenCL

Python wrapper

around

OpenCL

OpenCL provides vendor

optimized,

cross-platform, cross-vendor

access to heterogeneous

compute resources

Harlan

High level

language for

GPU

programming

Third party names are the property of their owners.

OpenCL SPIR 1.2 public review draft

OpenCL: Major developments in 2013

OpenCL 2.0
Significant enhancements to memory and

execution models to expose emerging hardware

capabilities and provide increased flexibility,

functionality and performance to developers

OpenCL-SPIR (Standard Parallel Intermediate Representation)

LLVM-based, low-level Intermediate Representation as target back-

end for alternative high-level languages. Provides enhanced IP

protection for software vendors.

OpenCL 2.0 public review draft

OpenCL 1.X memory Regions

• Global Mem_objs

allocated on host and

explicitly moved between

regions.

• Consistency at explicit

sync points

• Mem_objs as contiguous

blocks … pointer based

data structures between

host/device not

supported.

OpenCL 2.0: coarse grained SVM
• Memory consistency at

synchronization points

• Host needs to use sync API to

update data

– clEnqueueSVMMap

– clEnqueueSVMUnmap

• Memory consistency at granularity

of a buffer

• Allows sharing of pointers

between host and OpenCL device

• A required feature in OpenCL 2.0

OpenCL 2.0: fine grained/System SVM

• Host and device can

update data in buffer

concurrently

• Memory consistency

using C11 atomics and

synchronization

operations

• An optional feature in

OpenCL 2.0

Nested Parallelism
T
im

e

Ideal

TId

Consider an algorithm as a task
graph where the task structure is
determined at runtime based on the
input data.

Nested Parallelism
T
im

e

Ideal OpenCL 1.X

T1.x

TId

With OpenCL 1.X only
the host can submit
kernels for execution.

So after each task ends,
it must copy data back
to the host so the host
knows which kernels to
submit in the next
phase.

This requires extra code
(the red dotted lines)
and overhead resulting
in T1.x >> TId

Nested Parallelism
T
im

e

Ideal OpenCL 1.X OpenCL 2.0

T1.x

T2.0

TId

OpenCL lets kernels submit
kernels for true nested
parallelism

Nested Parallelism
T
im

e

Ideal OpenCL 1.X OpenCL 2.0

T1.x

T2.0

TId

OpenCL lets kernels submit
kernels for true nested
parallelism

Nested parallelism is more
convenient for the
programmer and can lead
to much lower overhead,
so T2.0 ~ TId

kernel void my_func(global int *a, global int *b)

{

 …

 void (^my_block_A)(void) =

 ^{

 size_t id = get_global_id(0);

 b[id] += a[id];

 };

 enqueue_kernel(get_default_queue(),

 CLK_ENQUEUE_FLAGS_WAIT_KERNEL,

 ndrange_1D(…),

 my_block_A);

}

• Use clang Blocks to describe kernel to queue

Nested Parallelism

Generic Address Space

• OpenCL 2.0 no longer

requires an address space

qualifier for arguments to

a function that are a

pointer to a type

– Except for kernel

functions

• Generic address space

assumed if no address

space is specified

• Makes it really easy to

write functions without

having to worry about

which address space

arguments point to

void

my_func (int *ptr, …)

{

 …

 foo(ptr, …);

 …

}

kernel void

foo(global int *g_ptr,

 local int *l_ptr, …)

{

 …

 my_func(g_ptr, …);

 my_func(l_ptr, …);

}

Other OpenCL 2.0 Features

• What made it in

– Memory model based on C’11 … includes atomics, and memory

orders

– Pipe memory objects to support pipeline algorithms.

– Flexible work-group sizes

– Expanded set of work-group functions (collective operations across

work-items in a single work-group).

– broadcast, reduction, vote (any & all), prefix sum

– … and much more

• But we still lack …

– Support for a C++ kernel programming language.

– Ability to write a wide range of algorithms that require concurrency

guarantees (e.g. try writing a spin lock in OpenCL).

The Good the Bad and the Ugly

• Threading like its 2011

• Next generation heterogeneous programming

• Parallel languages/tools will never get it right. I give up

44

My optimistic view from 2005 …

We’ve learned our

lesson … we emphasize

a small number of

industry standards

But we didn’t learn our lesson
History is repeating itself!

Third party names are the property of their owners.

 A small sampling of Programming environments from the
NEW golden age of parallel programming (from the literature 2010-2012)

We’ve slipped back into the “just create a new language” mentality.

Note: I’m not criticizing these technologies. I’m criticizing our
collective urge to create so many of them.

AM++
ArBB
BSP
C++11
C++AMP
Charm++
Chapel
Cilk++
CnC
coArray Fortran
Codelets

Copperhead
CUDA
DryadOpt
Erlang
Fortress
GA
GO
Gossamer
GPars
GRAMPS
Hadoop
HMMP

ISPC
Java
Liszt
MapReduce
MATE-CG
MCAPI
MPI
NESL
OoOJava
OpenMP
OpenCL
OpenSHMEM

OpenACC
PAMI
Parallel Haskell
ParalleX
PATUS
PLINQ
PPL
Pthreads
PXIF
PyPar
Plan42
RCCE

Scala
SIAL
STAPL
STM
SWARM
TBB
UPC
Win32
threads
X10
XMT
ZPL

I give up ….

• Computer Scientists are just going to make things

worse … creating new languages instead of making

the ones we have work well (with the tools we need).

• We application developers must take charge of our

own destiny.

• We need to:

– Raise the level of abstraction so our programming model

matches the mathematics of our domain.

– Build frameworks we can maintain that hide the computer

Science mess from our desire to do real work.

• Examples:

– Trilliois, Cactus, PETsc …

– The Combinatorial BLAS and KDT

47

Discussed in the next
batch of slides

48

Personal

Health

Image

Retrieval

Hearing,

Music
Speech

Parallel

Browser

Design Pattern Language (OPL)

Sketching

Legacy

Code
Schedulers

Communication &

Synch. Primitives

Efficiency Language Compilers

Par Lab Research Overview
Easy to write correct software that runs efficiently on manycore

Legacy OS

Intel Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

Hypervisor

C
o
rr

e
c
tn

e
s
s

Composition & Coordination Language (C&CL)

Parallel

Libraries

Parallel

Frameworks

Static

Verification

Dynamic

Checking

Debugging

with Replay

Directed

Testing
Autotuners

C&CL Compiler/Interpreter

Efficiency Languages

Type

Systems

High level, safe, concurrency
through high level frameworks
High level, safe, concurrency

through high level frameworks

Low level, risky, hardware
details fully exposed

Low level, risky, hardware
details fully exposed

49

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-

Invocation

Puppeteer

Graphical-Models

Finite-State-Machines

Backtrack-Branch-and-Bound

N-Body-Methods

Circuits

Spectral-Methods

Monte-Carlo

Applications

Task-Parallelism

Recursive-splitting

Data-Parallelism

Pipeline

Discrete-Event

Geometric-Decomposition

SPMD

Strict-Data-Par.

Fork/Join

Actors

Master/Worker

Graph-Partitioning

Distributed-Array

Shared-Data

Shared-Queue

Shared-Hash-Table

MIMD

SIMD

Structural Patterns Computational Patterns

Parallel Execution Patterns

Concurrent Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing

Collective-Comm.

Mutual-Exclusion

Thread-Pool

Speculation

Data structure Program structure

Coordination Advancing “program counters”

Point-To-Point-Sync.

Collective-Sync.

Transactional-Mem.

Loop-Par.

BSP

Task-Queue

Task-Graph

Data-Flow

Digital-Circuits

Speculation

A Design Pattern Language for Engineering Parallel applications

Source: Keutzer and Mattson, Intel Technology Journal, Vol. 13, Issue 4, 2010.

•Graphical Models

•MapReduce

50

•Pipe-and-Filter

Pattern examples

Structural Patterns: Define the software structure .. Not what is computed

•Iterative refinement

Computational Patterns: Define the computations “inside the boxes”

•Structured mesh

Parallel Patterns: Defines parallel algorithms

•Fork-join •SPMD •Data parallel

Acknowledgements

• I am a cheerleader and funder of this work, but I

didn’t do any of it myself

–Content on the Combinatorial BLAS and KDT come from

Aydin Buluc of LBNL and John Gilbert of UC Santa

Barbara.

–The integration of SEJITS with KDT was carried out by

Aydin Buluc with Shoaib Kamil of MIT, Armando Fox of

UCB, Adam Lugowski of UCSB, Lenny Oliker of LBNL,

and Sam Williams of LBNL

51

1

2

3

4
7

6

5

AT

1

7

7 1
from

to

Consider the Breadth First Search
Problem … I want to know for each
node in the graph, which node is its

parent.

A = the adjacency matrix … Elements nonzero when vertices are adjacent

1

2

3

4
7

6

5

X AT

1

7

7 1
from

to

ATX



1

1

1

1

1 parents:

Use the sparse matrix vector multiplication

pattern but replace the two traditional (*,+)

operations with:

• Multiply: select

• Add: minimum

Start BFS from vertex 1. Each phase updates the
“frontier” which is used in the next step

Combine results from each phase to construct the parents vector.

1

2

3

4
7

6

5

X

4

2

2

AT

1

7

7 1
from

to

ATX



2

4

4

2

2 4

When multiple parents,
Select vertex with
minimum label as parent

1

1 parents:
4

2

2

1

2

3

4
7

6

5

X

3

AT

1

7

7 1
from

to

ATX


3

5

7

3

1

1 parents:
4

2

2

5

3

X AT

1

7

7 1
from

to

ATX



6

1

2

3

4
7

6

5

Extended to matrix-matrix multiply,
this primitive represents multi-source
one-hop breadth-first search and
combine … which is the foundation of
many graph algorithms.

BFS strong scaling

2

4

6

8

10

12

5040 10008 20000 40000

C
o
m

m
.

ti
m

e
 (

se
c
o
n
d
s)

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

4

8

12

16

20

5040 10008 20000 40000

G
T
E
P
S

Number of cores

1D Flat MPI 2D Flat MPI
1D Hybrid 2D Hybrid

• NERSC Hopper (Cray XE6, Gemini interconnect AMD Magny-Cours)
• Hybrid: In-node 6-way OpenMP multithreading
• Graph500 (R-MAT): 4 billion vertices and 64 billion edges.

B., Madduri. Parallel breadth-first search on distributed memory systems. Supercomputing, 2011.

Sparse matrix-sparse
matrix multiplication

x

The Combinatorial BLAS implements these, and more,

on arbitrary semirings, e.g. (, +), (and, or), (+, min)

Sparse matrix-sparse
vector multiplication

x

.*

Linear-algebraic primitives

Element-wise operations Sparse matrix indexing

Some Combinatorial BLAS functions

The case for graph primitives based on
sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Data driven,
unpredictable communication.

Irregular and unstructured,
poor locality of reference

Fine grained data accesses,
dominated by latency

The case for graph primitives based on
sparse matrices

Many irregular applications contain
coarse-grained parallelism that can be exploited

by abstractions at the proper level.

Traditional graph
computations

Graphs in the language of
linear algebra

Data driven,
unpredictable communication.

Fixed communication patterns

Irregular and unstructured,
poor locality of reference

Operations on matrix blocks exploit
memory hierarchy

Fine grained data accesses,
dominated by latency

Coarse grained parallelism,
bandwidth limited

A new effort to define the BLAS of graphs-

as-linear-algebra
• There are graph algorithms that require interaction

between graph elements making a map-reduce style of

computing impractical.

• Representing graphs in terms of linear algebra operations

over semi-rings, is a well known technique.

• There is a great deal of variation in graph frameworks

exposed to data-scientists … standardization at this high

level makes no sense.

• The underlying primitives, however, are stable and ready to

standardize.

– Standardization enables vendor optimizations (e.g. the BLAS)

– Standardization is efficient … keeps people from wasting time

“reinventing the wheel”.

62
To be presented at HPEC’13, Boston MA, Sept 11, 2013

A new effort to define the BLAS of graphs-

as-linear-algebra

Standards for Graph Algorithm Primitives
Tim Mattson (Intel Corporation), David Bader (Georgia Institute of

Technology), Jon Berry (Sandia National Laboratory), Aydin Buluc

(Lawrence Berkeley National Laboratory), Jack Dongarra (University of

Tennessee), Christos Faloutsos (Carnegie Melon University), John Feo

(Pacific Northwest National Laboratory), John Gilbert (University of

California at Santa Barbara), Joseph Gonzalez (University of California at

Berkeley), Bruce Hendrickson (Sandia National Laboratory), Jeremy

Kepner (Massachusetts Institute of Technology), Charles Leiserson

(Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana

University), David Padua (University of Illinois at Urbana-Champaign),

Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray

Corporation), Mike Stonebraker (Massachusetts Institute of Technology),

Steve Wallach (Convey Corporation), Andrew Yoo (Lawrence Livermore

National Laboratory)

63
To be presented at HPEC’13, Boston MA, Sept 11, 2013

• Aimed at domain experts who know their problem well
but don’t know how to program a supercomputer

• Easy-to-use Python interface

• Runs on a laptop as well as a cluster with 10,000
processors

• Open source software (New BSD license)

• V0.3 release April 2013

A general graph library with
operations based on linear

algebraic primitives

Knowledge

Discovery

Toolbox
http://kdt.sourceforge.net/

Parallel Graph Analysis Software

Discrete
structure analysis

Graph theory

Computers Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

HPC scientists
and engineers

Graph algorithm
developers

Knowledge Discovery Toolbox (KDT)

Domain scientists

Parallel Graph Analysis Software

Discrete
structure analysis

Graph theory

Computers Communication Support
(MPI, GASNet, etc)

Threading Support
(OpenMP, Cilk, etc))

Distributed Combinatorial BLAS

Shared-address space
Combinatorial BLAS

HPC scientists
and engineers

Graph algorithm
developers

Knowledge Discovery Toolbox (KDT)

• KDT is higher level (graph abstractions)
• Combinatorial BLAS is for performance

Domain scientists

Graph of text
& phone calls

Betweenness
centrality on
text messages

Betweenness
centrality

Betweenness
centrality on
phone calls

The need for filters

Edge filter illustration

(T, F, 0)

(F, T, 1)
(T, F, 3)

(T, F, 2)

(T, T, 3)

(T, T, 1)

(F, T, 1)

(F, T, 4)

(T, T, 5)

(T, F, 0)

(T, F, 2)
(F, F, 0)

class edge_attr:
 isText
 isPhoneCall
 weight

(F, T, 1)
(T, F, 3)

(T, F, 2)

(T, T, 3)

(T, T, 1)

(F, T, 1)

(F, T, 4)

(T, T, 5)

(T, F, 2)

class edge_attr:
 isText
 isPhoneCall
 weight

G.addEFilter(lambda e: e.weight > 0)

Edge filter illustration

(F, T, 1)

(T, T, 3)

(T, T, 1)

(F, T, 1)

(F, T, 4)

(T, T, 5)

class edge_attr:
 isText
 isPhoneCall
 weight

G.addEFilter(lambda e: e.weight > 0)
G.addEFilter(lambda e: e.isPhoneCall)

Edge filter illustration

Problems with Customizing in KDT

• Filtering on attributed semantic graphs is slow
• In plain KDT, filters are pure Python functions.

• Requires a per-vertex or per-edge upcall into Python

• Can be as slow as 80X compared to pure C++

• Adding new graph algorithms to KDT is slow

• A new graph algorithm = composing linear algebraic
primitives + customizing the semiring operation

• Semirings in Python; similar performance bottleneck

Review: Selective Embedded Just In Time
Specialization (SEJITS)

Non-DSL

Code

Program

Code in DSL

A

Code in DSL

B

Interpreter

Data

DSL

Codegen

External

Compiler

Dynamic

Link Library

Data
Code in DSL

A

C
o

m
p

ile
 P

h
a
s
e

E

x
e

c
u
te

 P
h

a
s
e

Result

Catanzaro, Kamil, Lee, Asanovic, Demmel, Keutzer, Shalf, Yelick, Fox. SEJITS: Getting productivity
and performance with selective embedded JIT specialization. PMEA, 2009

KDT	Algorithm	

CombBLAS	
Primi ve	

Filter	(Py)	

Python	

C++	

Semiring	(Py)	
KDT	Algorithm	

CombBLAS	
Primi ve	 Filter	(C++)	

Semiring	(C++)	

Standard	KDT	 KDT+SEJITS	

SEJITS				Transla on	

Filter	(Py)	

Semiring	(Py)	

SEJITS for filter/semiring acceleration

KDT	Algorithm	

CombBLAS	
Primi ve	

Filter	(Py)	

Python	

C++	

Semiring	(Py)	
KDT	Algorithm	

CombBLAS	
Primi ve	 Filter	(C++)	

Semiring	(C++)	

Standard	KDT	 KDT+SEJITS	

SEJITS				Transla on	

Filter	(Py)	

Semiring	(Py)	

SEJITS for filter/semiring acceleration

B., Duriakova, Gilbert, Fox, Kamil, Lugowski, Oliker, Williams. High-Performance and High-
Productivity Analysis of Filtered Semantic Graphs, IPDPS, 2013

Embedded DSL: Python for the whole application
• Introspect, translate Python to equivalent C++ code
• Call compiled/optimized C++ instead of Python

SEJITS+KDT multicore performance

Synthetic data with weighted randomness to match filter permeability
Notation: [semiring impl] / [filter impl]

- MIS= Maximal

Independent Set

- 36 cores of Mirasol(Intel®

Xeon™ E7-8870

processor)

- Erdős-Rényi matrix

(Scale 22, edgefactor=4)

Summary … we’ve discussed 3 recent

developments in Parallel computing …

• C++’11 Standardizes state of the art in multi-threading.

• OpenCL continues to evolve … expanding the range of

algorithms it can address (nested parallelism) and

support the latest devices with HW supported shared

address spaces (SVM).

• Application specific BLAS-like libraries and software

transformation tools (e.g. SEJITS) suggest a different

path to solving the parallel programming problem.

77

I leave the assignment of “the Good, the bad and the ugly” to you.

